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Abstract
A multi-marker automaton is a finite automaton

which keeps marks as pebbles in the finite control, and
cannot rewrite any input symbols but can make marks
on its input with the restriction that only a bounded
number of these marks can exist at any given time.
An improvement of picture recognizability of the fi-
nite automaton is the reason why the multi-marker
automaton was introduced. On the other hand, a
multi-inkdot automaton is a conventional automaton
capable of dropping an inkdot on a given input tape
for a landmark, but unable to further pick it up. This
paper deals with marker versus inkdot over three-
dimensional input tapes, and investigates some prop-
erties.
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1 Introduction and Preliminaries

A multi-marker automaton is a finite automaton
which keeps marks as pebbles in the finite control, and
cannot rewrite any input symbols but can make marks
on its input with the restriction that only a bounded
number of these marks can exist at any given time. An
improvement of picture recognizability of the finite au-
tomaton is the reason why the marker automaton was
introduced. That is, a two-dimensional multi-marker
automaton can recognize connected pictures [1].

On the other hand, as is the well-known open prob-
lems in computational complexity, there is the histor-
ical open question whether or not the separation ex-
ists between deterministic and nondeterministic space
(especially hard-level) complexity classes. Related to
the open question, D. Ranjan et al. introduced a
slightly modified Turing machine model, called a one-
inkdot Turing machine [6]. An inkdot machine is a
conventional Turing machine capable of dropping an
inkdot on a given input tape for landmark, but un-
able to further pick it up. Against an earlier expecta-
tion, it was proved that nondeterministic inkdot Tur-
ing machines are more powerful than nondeterminis-
tic ordinary Turing machines for sublogarithmic space
bounds. As is well-known result in the case of two-

Fig. 1: Image of Marker or Inkdot on Three-
dimensional Input Tape.

dimensional input tapes, there is a set of square tapes
accepted by a nondeterministic finite automaton, but
not by any deterministic Turing machine with sublog-
arithmic space bounds. Thus, it makes no sense to
ask the same question whether the separation exists
between deterministic and nondeterministic complex-
ity classes for the two-dimensional Turing machines.
However, there is an other important aspect in the
inkdot mechanism : we can see a two-dimensional fi-
nite automaton with inkdot as a weak recognizer of the
inherent properties of digital pictures. By this moti-
vation, a two-dimensional multi-inkdot automaton was
introduced [5,6].

By the way, the question of whether processing
three-dimensional digital patterns is much more diffi-
cult than two-dimensional ones is of great interest from
the theoretical and practical standpoints. Thus, the
research of three-dimensional automata as the compu-
tational model of three-dimensional pattern processing
has been meaningful. From this viewpoint, we inves-
tigated a multi-marker automaton and a multi-inkdot
automaton on three-dimensional input tapes [7-12].

This paper deals with a relationship between
marker and inkdot for three-dimensional automata,
and shows some properties (see Fig.1).

Let Σ be a finite set of symbols, a three-dimensional
tape over Σ is a three-dimensional rectangular array
of elements of Σ. The set of all three-dimensional
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tapes over Σ is denoted by Σ(3). Given a tape x in
Σ(3), for each integer j(1≤j≤3), we let lj(x) be the
length of x along the jth axis. The set of all x ∈ Σ(3)

with l1(x)=n1, l2(x)=n2 and l3(x)=n3 is denoted by
Σ(n1,n2,n3). When 1≤ij≤lj(x) for each j(1≤j≤3), let
x(i1, i2, i3) denote the symbol in x with coordinates
(i1, i2, i3). Furthermore, we define

x[(i1, i2, i3),(i′1, i
′
2, i

′
3)],

when 1≤ij≤i′j≤lj(x) for each integer j(1≤j≤3), as the
three-dimensional input tape y satisfying the following
conditions:

(i) for each j(1≤j≤3), lj(y)=i′j − ij+1;
(ii) for each r1,r2,r3(1≤r1≤l1(y),1≤r2≤l2(y),1≤r3≤

l3(y)),y(r1,r2,r3)=x(r1+i1−1,r2+i2−1,r3+i3−1).(We
call x[(i1, i2, i3),(i′1, i

′
2, i

′
3)] the [(i1, i2, i3),(i′1,i

′
2, i

′
3)]-

segment of x.)

A three-dimensional finite automaton (3-FA),
which can be considered as a natural extension of the
two-dimensional finite automaton to three dimensions,
consists of read-only three-dimensional input tape, a
finite control, and an input head which can move east,
west, south, north, up, or down [1]. By 3-AFA (resp.,
3-NFA, 3-DFA, 3-AM1, 3-NM1, 3-DM1, 3-AIk, 3-
NIk, 3-DIk), we denote alternating (resp., nondeter-
ministic, deterministic, alternating 1-marker, nonde-
terministic 1-marker, deterministic 1-marker, alternat-
ing k-inkdot, nondeterministic k-inkdot, deterministic
k-inkdot) 3-FA. Furthermore, by 3-UFA (resp., 3-
UM1, 3-UIk), we denote alternating (resp., alternat-
ing 1-marker, alternating k-inkdot) 3-FA with only
universal states.

A configuration of an alternating 1-marker 3-FA
M on a three-dimensional input tape x is the form
((i1, i2, i3), marker-position, q), where (i1, i2, i3) is the
input head position, marker-position is the position
of the marker on x (let marker-position be ‘no’ if the
marker is not placed on the input tape x), and compo-
nent q represents a state of the finite control. For each
input tape x, we write c ⊢M,x c

′
, and say that c

′
is an

immediate successor of c (of M on x), if configuration
c
′
is derived from configuration c in one step of M on x

according to the next-move relation. A configuration
with no immediate successor is called a halting config-
uration. Let M be an alternating 1-marker (k-inkdot)
3-FA, and x be an input tape. A sequence of config-
urations c1c2......cm (m≥1) is called a computation of
M on x if c1 ⊢M,x c2 ⊢M,x · · · ⊢M,x cm.

For each X ∈ {D,N,U,A}, we denote by L[3-XFA]
the class of sets of all three-dimensional tapes accepted
by 3-XFA’s. That is,

L[3-XFA]={T | T=T (M) for some 3-XFA M},
where T (M) is the set of all three-dimensional tapes

accepted by M . L[3-XM1] and L[3-XIk] are defined
similarly. For any family of three-dimensional au-
tomata M ’s, L[M c] denotes the class of sets of cu-

bic tapes accepted by M ’s. For a set T of three-
dimensional tapes, the complementation of T is de-
noted by T̂ . Define co−L={T | T∈L}.

2 Known Results and Related Results

This section surveys known results and related re-
sults in [7-12] concerning k-inkdot and 1-marker 3-
FA’s. The following result shows a relationship among
the accepting powers of 3-FA’s k-inkdot 3-FA’s, and
1-marker 3-FA’s.

Theorem 2.1[7-12].
(1) L[3-DFA] = L[3-DIk] ( L[3-DM1],
(2) L[3-NFA] ( L[3-NIk] ( L[3-NM1],
(3) L[3-UFA] ( L[3-UIk] ( L[3-UM1], and
(4) L[3-AFA] ( L[3-AIk] ⊆ L[3-AM1].

It is unknown whether L[3-AIk] ( L[3-AM1]. What
are the relationships between L[3-NIk] and L[3-DM1],
between L[3-UIk] and L[3-DM1], and between L[3-
AIk] and L[3-NM1]? The following theorem answer
this question.

Theorem 2.2.
(1) L[3-NIk] is incomparable with L[3-DM1],
(2) L[3-UIk] is incomparable with L[3-DM1], and
(3) L[3-NM1] ( L[3-AIk].

Proof: Let T1={x ∈ {0, 1}(3) | ∃n≥1 [l1(x)=l2(x)=
l3(x)=2n ∧ (the top half of x is the same as the
bottom half of x)]}, and T2={x ∈ {0, 1}(3) | ∃n≥2
[l1(x)=l2(x)=l3(x)=n ∧ ∃ i(2≤i≤n) { the first plane
of x is the same as the ith plane of x }}}.

By using the same technique as in the proof of
Lemma 5.1, Corollary 5.1, Theorem 6.4 in [5], we
can show that the complement of T1 is in L[3-NIk],
T1∈L[3-UIk], and T2 /∈L[3-NIk]∪L[3-UIk]. Further-
more, we can easily prove that T2∈L[3-DM1] [2,4].

By using the same technique as in the proof of The-
orem 4.1 in [2], we can show that the complement of
T1 is not in L[3-DM1]. From these observation, (1)
and (2) of the theorem follow. (3) of the theorem can
be proved by using the same idea of Ref. [3,4]. ¤

The following result in [7-12] shows a relationship
among the accepting powers of determinism, nonde-
terminism, alternation with only universal states, and
alternation for k-inkdot 3-FA’s.

Theorem 2.3[7-12]. (1) L[3-DIk] ( L[3-NIk] ( L[3-
AIk], and (2) L[3-DIk] ( L[3-UIk] ( L[3-AIk].

A relationship between L[3-NIk] and L[3-UIk] is
shown in the following theorem.
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Theorem 2.4. L[3-NIk] is incomparable with L[3-
UIk].

Proof: Let T1 and T2 be sets described in the proof
of Theorem 2.2. We can easily prove that T1∈L[3-
UIk]−L[3-NIk] [5], and the complement of T2 is in
L[3-NIk], but not in L[3-UIk]. From this fact, the
theorem follows. ¤

For 1-marker 3-FA’s, we can easily get the following
result [2,4]. That is, alternation is better than nonde-
terminism, which is better than determinism.

Theorem 2.5. L[3-DM1] ( L[3-NM1] ( L[3-AM1].

3 Main Results

This section investigates an open problem. That is,
a relationship between L[3-UMI1] and L[3-AIk].

Here is some preliminaries. Let c1c2......cm(m≥1)
be a computation of M on an input tape x. Then,
this computation is called:

· a halting computation of M on x if cm is a halting
configuration other than any accepting configuration,

· a double-looping computation of M on x if there
exist some i(1≤i≤m−2) and some (possibly empty)
sequence of configurations s such that (i) cj ̸=ck for
each 1≤j≤k≤i, (ii) c1c2......cm = c1c2......ci−1ciscisci,
and (iii) each configuration in cis is different from each
other, and different from each cr(1≤r≤i), and

· a rejecting computation of M on x if the sequence
c1c2......cm is a halting, or double-looping computa-
tion.

Theorem 3.1. L[3-AIk]−L[3-UM1] ̸= ϕ.

Proof: Let V (m)={x1c1x2c2......xmcm | ∀i(1≤i≤m)
{xi∈{0,1}(m,m,m) ∧ ci∈{2}(m,1,m)}}, and T3={xy |
∃m≥1{x,y∈V (m)} ∧ x̸=y}, where for any two three-
dimensional tapes x and y with l3(x)=l3(y), we denote
by xy the three-dimensional tape obtained by concate-
nating y to the east of x. To prove the theorem, we
below show that (1) T3 ∈ L[3-AIk], and (2) T3 /∈ L
[3-UM1]. It is obvious that Part (1) of the theorem
holds. Here we only prove (2). We suppose to the
contrary that there is a 3-UM1 M which accepts T3.
Let Q be the set of states of the finite control of M .
We divide Q into two disjoint subsets Q+ and Q−

which correspond to the sets of states when M holds
and does not hold the marker in the finite control, re-
spectively. M starts from the initial state in Q+ with
the input head on the upper-northwestmost symbol of
an input tape. We assume without loss of generality
that M satisfies the following condition (A): ‘ M does
not go out of the boundary symbols #’s. (Of course,
M does not go into the input tape from the outside

of the boundary symbols #’s.)’ For each M≥1, let
W (m)={xy | x,y∈V (m)}. Below we shall again con-
sider the computations of M on tapes in W (m) for
large m≥1. Let x be any tape in V (m) that is sup-
posed to be an east or west half on an input tape (in
W (m)) to M , and let #’sx (resp., x#’s) be the tape
obtained from x by attaching the boundary symbols
#’s to the west, south, north, upper, and lower (resp.,
east, south, north, upper,and lower) sides. Note that,
from the above condition (A), both the entrance points
to #’sx (resp., x#’s) and the exit points from #’sx
(resp., x#’s) are the east (resp., west) side of #’sx
(resp., x#’s). Let PT (m) be the set of these entrance
(or exit) points. Clearly, |PT (m)| = (m + 2)2. Sup-
pose that the marker of M is not placed on the #’sx
(resp., x#’s). Then, we define a mapping Mw

x (resp.,
Me

x), which depends on M and x, from Q × PT (m)
to the power set of (Q× PT (m)) ∪ Qstop ∪ {loop} as
follows (where Qstop is the set of halting states other
than accepting states, and loop is a new symbol):

· for any (s,p), (s
′
,p

′
)∈Q−×PT (m),

(s
′
,p

′
)∈Mw

x (s,p) (resp., Me
x(s,p)) ⇔ when M

enters #’sx (resp., x#’s) in state s from entrance
point p of the east (resp., west) edge of #’sx (resp.,
x#’s),there exists a computation of M in which M
eventually exits #’sx (resp., x#’s) in state s

′
from

exit point p
′

of the east(resp.,west) edge of #’sx
(resp., x#’s),

· for any (s, p) ∈Q×PT (m) and for any q∈Qstop,
q∈Mw

x (s, p) (resp., Me
x(s, p)) ⇔ when M enters #’sx

(resp., x#’s) in state s from entrance point p of the
east (resp., west) edge of #’sx (resp., x#’s), there ex-
ists a computation of M in which M eventually enters
state q in #’sx (resp., x#’s), and halts, and

· for any (s, p)∈Q×PT (m), loop∈Mw
x (s, p) (resp.,

Me
x(s, p)) ⇔ when M enters #’sx (resp., x#’s) in

state s from entrance point p of the east (resp., west)
edge of #’sx (resp., x#’s), there exists a computation
in which M enters a loop in #’s x (resp.,x #’s).

Let x1, x2 ∈ V (m). We say that x1 and x2 are
· M -equivalent if two mappings Mw

x1
and Mw

x2
are

equivalent, and two mappings Me
x1

and Me
x2

are equiv-
alent, and

· M -equivalent if for any (s, p), (s
′
,

p
′
)∈Q−×PT (m), and for any a∈{w, e}, (s

′
,

p
′
)∈Ma

x1
(s, p) if and only if (s

′
, p

′
)∈Ma

x2
(s, p).

(Note that if x1 and x2 are M -equivalent, then x1

and x2 are M -eqivalent.) Clearly, M -equivalence is
an equivalence relation on V (m). Clearly, there are
at most e(m) = (2|Q|(m+2)2+d+1)|Q|(m+2)2 , where d =
|Qstop|, M -equivalence classes of V (m). Let P (m) be
a largest M -equivalence classes of V (m). Then, we

have |P (m)| ≥ V (m)
e(m) = 2m4

e(m) .
Note that |P (m)|≫1 for large m. By using the same

technique as in the proof of Theorem 6 in [4] and the
well-known counting argument, finally, we can prove
that T3 /∈ L[3-UM1]. ¤
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4 Conclusion

We investigated about marker versus inkdot on
three-dimensional input tapes, and showed some ac-
cepting properties of various three-dimensional au-
tomata with markers or inkdots.

We conclude this paper by giving the following open
problems : (1) L[3-AIk](L[3-AM1]? (2) What are the
relationships between L[3-NIk] and L[3-UM1] and be-
tween L[3-UIk] and L[3-NM1]? (3) Is L[3-NM1] in-
comparable with L[3-UM1]? (4) L[3-UM1](L[3-AIk]?
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